Cosmetic Danger – Pthalates

Subscribe to this Blogger's RSS feed
Share

WHAT ARE PHTHALATES?

The widely-used group of chemicals called phthalates (pronounced THA-lates) can interfere with hormones in the body, posing potential risks to the reproductive and thyroid systems (Duty 2003, 2004, 2005; Swan 2005; Main 2006; Hauser 2007; Huang 2007; Meeker 2007). Preliminary studies also link phthalates to diabetes risk and asthma (Bornehag 2004; Stahlhut 2007; Jaakkola 2008; Kolarik 2008). Phthalates are detected in nearly every American, from babies to adults (CDC 2005). According to a large national survey conducted by the Centers for Disease Control and Prevention (CDC), levels of phthalates in some U.S. women of childbearing age exceed the government’s safe levels (Kohn 2000). Phthalates are widespread contaminants in the environment and in wildlife as well (Kolpin 2002; Rudel 2003).

HOW ARE WE EXPOSED TO THEM?

Though not always listed on labels, phthalates are common ingredients in cosmetics and body care products. Dibutyl phthalate may be found in nail polish. Phthalates are also used to moisturize and to help chemicals absorb into the skin. The most common use of phthalates is as an ingredient in “fragrance” mixtures added to body care products. Companies are not required to reveal the ingredients making up fragrance mixtures on the labels of products. EWG product testing found phthalates in nearly three-quarters of 72 name-brand products, though none of them listed phthalates as ingredients (EWG/HCWH/WVE 2002).

Phthalates also soften plastic used in a wide range of ordinary products, from food wraps and toys to building materials and medical equipment. Currently, the chemical industry produces billions of pounds of these chemicals each year. People are exposed to phthalates daily through contact with everyday products and via food, indoor air, and even house dust (CDC 2005).

WHAT ARE THE POTENTIAL HEALTH EFFECTS?

Studies of ordinary people suggest exposures to phthalates increase the risk of reproductive system birth defects and hormonal changes in baby boys (Swan 2005; Main 2006). In adult men they are linked to reduced sperm motility and concentration, increased damage to sperm DNA, and hormonal changes (Duty 2003, 2004, 2005; Hauser 2007). Phthalate exposures are linked to obesity and insulin resistance in men (Stahlhut 2007), conditions that can lead to Type 2 diabetes. They are also linked to thyroid irregularities in both men and women (Huang 2007; Meeker 2007), and to asthma and skin allergies in children (Bornehag 2004; Jaakkola 2008; Kolarik 2008). Animal studies indicate exposure to phthalates can trigger miscarriage or cause infertility in females, and can cause birth defects in male and female offspring of animals exposed during pregnancy (e.g., Marsman 1995; Wine 1997; Ema 1998; Mylchreest 1998, 1999, 2000; Gray 1999, 2000; CERHR 2000).

HAVE THESE CHEMICALS BEEN REGULATED?

Phthalates are considered hazardous waste and are regulated as pollutants in air and water. One phthalate, DEHP, is regulated in drinking water. DEHP was allegedly removed voluntarily from children’s toys over a decade ago. However, 2 recent studies detected DEHP in toys on the market today (Purvis 2005; Kay 2006). Bans on specific phthalates in children’s products were passed recently, first in California, and then nationwide. Phthalates are unregulated in food, cosmetics, and medical products in the U.S. In contrast, the European Union restricts use of some phthalates.

HOW CAN WE PREVENT FUTURE EXPOSURES?

Because phthalates are found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to phthalate-free cosmetics and body care products. Choose products that do not list “fragrance” as an ingredient, and nail polish that does not contain dibutyl phthalate. You can also choose fragrance-free detergents and cleaning products, eat less food packaged in plastic, and not microwave food in plastic containers.

www.ewg.org

WHAT IS TRICLOSAN?

Triclosan is an artificial antimicrobial chemical used to kill bacteria on the skin and other surfaces. Triclosan is used in a variety of cosmetics and everyday products. Recent studies suggest this chemical may disrupt thyroid function (Veldhoen 2006), and can form toxic byproducts in tap water and in the environment (Adolfsson-Erici 2002; Lindstrom 2002; Lores 2005; Fiss 2007). A scientific advisory panel to the U.S. Food and Drug Administration (FDA) determined that “antibacterial” soaps, like those containing triclosan, were no better than regular soap and water at killing germs or reducing the spread of infection (FDA 2005). The American Medical Association recommends that triclosan and other “antibacterial” products not be used in the home, as they may encourage bacterial resistance to antibiotics (Tan 2002). Despite this advice, widespread use has led to detection of triclosan in the breast milk, blood, and urine of ordinary people (Adolfsson-Erici 2002; TNO 2005; Allmyr 2006a, 2006b; Dayan 2007; Calafat 2008). CDC’s national survey indicates that triclosan contaminates the bodies of 75% of the American population (Calafat 2008).

HOW ARE WE EXPOSED TO TRICLOSAN?

Triclosan is the most common active ingredient in “antibacterial” liquid hand soaps, and is also found in toothpastes, deodorants, face and body washes, and acne treatments, among others. Besides cosmetics, triclosan is found in an increasing number of everyday items, such as dishwashing detergent, kitchen tools, toys, trash bags, bedding, bathmats, socks, and footwear (EWG 2008). Triclosan also contaminates household dust (Canosa 2007).

WHAT ARE THE POTENTIAL HEALTH EFFECTS?

Triclosan accumulates in fat and can build up in the bodies of people and animals over time (Samsøe-Petersen 2003). An animal study indicates tadpoles exposed to tiny amounts of triclosan experience disruption of the thyroid system (Veldhoen 2006). Triclosan increased the effect of thyroid hormones when it was present in water at levels below 1 part per billion. Such low levels are commonly measured in people, and in rivers and streams, due to widespread use of triclosan (Kolpin 2002; Calafat 2008). The thyroid hormone system is similar in frogs and humans, suggesting that triclosan may disrupt the human thyroid system. Thyroid hormones are critical for normal growth and development of humans as well; the developing brain of a child is particularly vulnerable to damage caused by disruption of the thyroid system.

Triclosan may also disrupt other critical hormone systems. A recent lab study found the chemical to exert both estrogenic and androgenic effects on human breast cancer cells (Gee 2008). Studies of fish suggest that triclosan may have weak androgenic (Foran 2000) or anti-estrogenic effects (Matsumura 2005), while a metabolite of triclosan may have estrogenic effects (Ishibashi 2004). Other animal studies link triclosan to inhalation and liver toxicity and cancer (EWG 2008).

Triclosan can react with chlorine in tap water to form chloroform, a suspected cancer-causing chemical (Fiss 2007). It can also degrade into a type of dioxin (Lores 2005), part of a group of highly toxic chemicals, and a compound called methyl triclosan that is toxic to aquatic life (Adolfsson-Erici 2002; Lindstrom 2002; Farré 2008). Triclosan may also promote antibiotic resistance in bacteria, because while repeated use kills most bacteria, this can allow resistant strains to flourish (Levy 2001; Tan 2002; Aiello 2005).

HAS THE CHEMICAL BEEN REGULATED?

Triclosan is regulated by FDA when used in cosmetics and for medical applications, by the U.S. Environmental Protection Agency (EPA) when used as an antibacterial pesticide (in products that make “antibacterial” claims), and by the Consumer Product Safety Commission (CPSC) when used in ordinary consumer products that do not make specific “antibacterial” claims. Current regulations do not take into account concerns regarding hormone disruption or formation of toxic byproducts, nor do they fully account for the potential for multiple exposures through the broad variety of triclosan-treated everyday products.

HOW CAN WE PREVENT FUTURE EXPOSURES?

Because triclosan is found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to triclosan-free cosmetics and body care products. Avoid body care products, especially liquid hand soaps, labeled “antibacterial,” and always check the list of ingredients. Triclosan will be listed as an active ingredient on the product label. If you use a skin disinfectant, use an alcohol hand rub or rinse. Avoid “antibacterial” dishwashing detergents, cleaning products, and other items – there is no evidence that these products protect your health. Triclosan is approved for use in over 140 different types of products, and most of these are not required to have ingredient labels (EWG 2008). Vague claims such as “protection against mold,” “odor-fighting” or “keeps food fresher, longer,” may also indicate the presence of triclosan.

Articles